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Abstract

Timed Petri-nets are used to model numerous types of large complex systems, especially

computer architectures and communication networks. While formal analysis of such models

is sometimes possible, discrete-event simulation remains the most general technique available

for assessing the model's behavior. However, simulation's computational requirements can be

massive, especially on the large complex models that defeat analytic methods. One way of

meeting these requirements is by executing the simulation on a parallel machine. This paper

describes simple techniques for the automated parallelization of timed Petri-net simulations. We

address both the issue of processor synchronization, as well as the automated mapping, static

and dynamic, of the Petri-net to the parallel architecture. As part of this effort we describe

a new mapping algorithm, one that also applies to more general parallel computations. We

establish analytic properties of the solution produced by the algorithm, including optimality on

some regular topologies. The viability of our integrated approach is demonstrated empirically

on the Intel iPSC/860 and Delta architectures using many processors. Excellent performance is

observed on models of parallel architectures.

*A preliminary version of this paper appears i0 the Proceedings of the 1991 Winter Simulation Conference under
the title "Parallel Simulation of Timed Petri Nets".
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1 Introduction

Timed Petri-nets (TPNs) are an important modeling tool used to study the behavior of various

types of complex systems. While a great deal of study has gone into the analytic properties of

TPNs (e.g., see [17] and its references), in practical settings TPNs are generally simulated. For

example, simulation of TPN-related models is the basis for the performance analysis in ADAS[8], a

tool designed specifically for parallel hardware and software performance evaluation. Discrete-event

simulation of TPNs is thus an important modeling and analysis activity, known to require great

computational effort. Parallel execution may decrease TPN simulation execution times; however,

parallelized simulations will be adopted in general only if the parallelization is largely automatic,

the topic of this paper. We describe methods for synchronizing processors and for load-balancing

parallel TPN simulations. Our methods are implemented in a tool where one designs the TPN

graphically, after which all parallelization is handled automatically. Our execution platform is the

Intel family of multicomputers. We observe good performance (e.g., speedups greater than 40 using

64 processors) on large TPN models of parallel architectures, including nearest neighbor meshes,

slotted rings, and Thinking Machines CM-1 global routing network.

Parallelized discrete-event simulation has been actively studied over the last ten years; the

survey in [9] is an excellent introduction to the topic; a newer survey [22] highlights current areas

of research interest. Synchronization remains a subject of high interest, owing to the complexity

of the synchronization requirements imposed by discrete-event simulations. The difficulty arises

because the simulation model is partitioned among processors, each of which maintains its own

simulation clock. An event executed on one processor may affect a submodel assigned to another

processor, necessitating an interprocessor communication. We therefore view a parallel discrete-

event simulation as a collection of communicating (and synchronizing) discrete-event simulations of

submodels. Consider: an event occurs at simulation time s on processor i, affecting the submodel

on another processor j at time s + d. For instance, the event may model switch communication

in a network simulation. If the processor j has already simulated past time s + d it may have

done so incorrectly, by neglecting to consider the effect of the message arrival at time s + d.

Synchronization protocols deal with this problem. Two fundamentally different styles of protocols

have been studied. Conservative approaches (e.g. [4, 16, 24]) ensure that a processor does not

advance its simulation clock until it is certain that it will not bypass some simulation time at

which another processor affects it. Conservative protocols are known to require lookahead in order

to avoid deadlock, and to achieve good performance. Lookahead is the ability of a processor

to predict its future behavior, as regards when next (in simulation time) it may affect another

processor's submodel. Optimistic approaches ([12]) permit a processor to simulate ahead under the

anticipation that another processor will not affect its submodel in the "past", but then correct these

temporal errors as they occur. Optimistic approaches require state-saving and rollback to function

properly. The notions of conservatism and optimism are not mutually exclusive; as observed in

[29], the space of synchronization protocols is better partitioned using finer distinctions. This leads

to protocols that combine elements of optimism and conservatism.

The synchronization approach we develop in this paper is conservative in all respects. A prin-



cipal contribution of this paper is to demonstrate that effective automated parallelization of TPN

simulations is possible using a very conservative, very simple, synchronization scheme. The looka-

head calculation is easy and automatic, and we provide a new automated mapping algorithm with a

demonstrated ability to balance workload and keep communication overhead low. We also incorpo-

rate dynamic remapping logic, and observe how it substantially boosts performance. The speedups

we present are an order of magnitude larger than any previously reported on TPN simulations.

The conceptual model of para£1el simulations that is usually studied (based on the seminal

work in [4]) precludes Petri-net semantics, an observation detailed in [36]. This conceptual model

ascribes fixed communication channels between logical processes(LPs); time-stamped messages are

exchanged via these channels, and an LP's simulation clock is advanced as a result of consuming

a message. The solution described in [36] involves extension of this model to support Petri-net

semantics. SIMD simulation using recurrence relations of a constrained class of stochastic TPNs

is developed in [2]. In work more closely related to ours, Sellami and Yalamanchili [32] and [33]
consider a conservative protocol to simulate "marked graphs", which are derived from a restricted

class of TPNs. They too exploit model characteristics to optimize the synchronization protocol

and to partition the marked graph model. The conceptual model we have most recently used

[24, 26, 25] is simply that of communicating discrete-event simulations. Our model employs the

same semantics of event list manipulation as does traditional serial discrete-event simulation, and

so does not suffer from the limitations of the message-consuming model. However the specifics

of our synchronization protocol require that some care be taken when partitioning a TPN among

processors. In extreme cases these requirements may preclude any parallelization by our methods.

We believe these cases are unusual, especially in TPN models of parallel architectures. One simple

condition that ensures our protocol will work is if every communication between distinct "modules"

(e.g. PEs, memories) in a simulated architecture is modeled with a transition having a non-zero

firing time. This simply models the real world constraint that communication takes time. Finally,

conservative and optimistic methods for timed Petri-net simulation are described in [5]. This

paper also proposes rules for partitioning networks, based on topological properties. No large scale

networks were considered, and performance results were limited to very small numbers of processors.

A simulation's workload cannot generally be predicted, even if the underlying structure is static.

A automated parallel simulation must measure workload at run-time, and dynamic remap it when

needed. Early work on the problem was developed in [23], which proposes to measure multiple

trial runs, analyze critical path information from each, and cluster pieces of the simulation model

based on aggregated critical path information. Later work on the Time Warp Operating System

(TWOS) [13] employed multiprocessor scheduling heuristics; similar ideas are explored in [10] and

[34]. These methods centralize the computation and distribution of new load distributions. Their

rebalancing algorithms typically consider incremental movement of LPs in efforts to reduce the

total communication cost.

Another approach is based on heuristic graph partitioning, e.g., [18], [30] and their references.

Here one aggregates nodes (elemental pieces of the model) into equal-sized blocks, minimizing the

sum of edge (e.g., communication) costs between separated nodes. This problem formulation has a

large literature in the VSLI design community. We have chosen a different approach for two reasons.



First, onecanrarelyanalyzethequalityof agraph-partitioningsohition,exceptto assertsomelocal
optimumcondition.Secondly,the objectivefunctiondoesnot reflectparallelcommunication.Our
approachhasanalyticassurances,andseeksto minimizeanobjectivefunction that better models
executiontime.

Thecontributionsofthis paperaretwo-fold.Oneofourcontributionsis anewheuristicfor static
mapping,aspectsof whichcanbeanalyticallyquantified.In somecaseswecanboundthedeviation
of the resultsfrom optimal, in other caseswecanproveoptimality itself. We alsoextendour
earlierwork in synchronizationandin dynamicremappingdecision-makingto theTPN simulation
problem,andsynthesizetheseadaptationswith thenewmappingalgorithm.Wedemonstrateatool
that acceptsa graphicallydesignedTPN, thenautomaticallymaps,synchronizes,anddynamically
remapsthe simulationexecutingona largescaleparallelarchitecture.Wereport the resultsof a
numberoflargeTPN models,includingoneof theThinkingMachinesCM-1globalroutingnetwork,
anda slotted-ringparallelarchitecture.Wereport goodperformance,obtainedautomatically,on
largescaleparallelarchitectures.In onecaseweobservea speedupin excessof 43on64processors
of theIntel TouchstoneDelta.

Theremainderof this paperis organizedasfollows.In Section§2wediscussTPN semantics.
Section§3developssynchronizationandsimulationalgorithms,andSection§4discussesautomated
mappingalgorithms. Finally, Section§5presentsour performanceresults. Section§6givesour
conclusions.

2 Background

A Petri-net can be viewed as a bipartite graph, with each node classified as either a place, or a

transition. The usual graphical conventions depict a place by a circle, and a transition by a straight

line. Places may direct arcs to transitions, and transitions may direct arcs to places. Each place

that directs an arc to a transition t is known as one of t's input places; likewise, each place to which

t directs an arc is known as one of t's output places. Input and output transitions are similarly

defined with respect to a place. A place may hold any number of tokens; the tokens may move from

place to place in accordance with the transition firing rule. A transition t may fire if each of its

input places has at least one token each. The effect of t's firing is to remove one token from each

of t's input places, and to add one token to each of its output places. The placement of tokens in

places at any instant is known as a marking.

A decision place has more than one output transition. The arrival of a token there may fulfill

the firing requirements of multiple transitions. However, only one of these transitions may fire,

since the firing of the first such will remove the enabling token from the decision place. A standard

means of resolving this dilemma is to non-deterministically choose which transition (among those

able to fire) will actually fire.

An ordinary Petri-net has no notion of "time". A common variant of timed Petri-nets associates

time with transition firings, as follows. Suppose the conditions to fire a transition are met at time

s, and the firing time associated with that transition is _. Then

• At time s, one token is removed from each of t's input places;



• Fromtime s to time s + (i the transition is considered to be firing;

• At time s + (i a token is added to each of t's output places.

We say that the transition firing is enabled at time s, and completes at time s + (i. Note that tokens

are committed to the transition firing at the time of the transition being enabled, not at the point

when the transition actually fires. The interpretation that commits tokens only upon firing is also

common; we will later discuss how to handle this as well.

We may construct a discrete-event simulation of a TPN whose events are TokenArrival,

BeginFiring, and EndFiring, which denote the arrival of a token to a place, the beginning

of a transition's firing, and the ending of a transition's firing, respectively. Assuming that the

initial marking is implemeffted through the event list with TokenArrival events at time 0, the

simulation may be executed using the following sequence.

1. Choose the least time event, at time Tsim and advance the simulation clock to time Tsim.

2. Execute the event, in one of the following manners.

Case: TokenArrival Let p denote the associated place. Increment the token count at p. If

the previous token count was non-zero, then the event processing is finished. Otherwise,

this token's arrival may enable the firing of some transition. In this case, among all

of p's output transitions, identify those now enabled to fire due to the token's arrival.

Choose one of these uniformly at random, say t, and insert a BeginFiring event for t

in the event llst, with time-stamp Tsi,n.

Case: BeginFiring Let t denote the associated transition, and let (it denote its firing time.

Decrement the token count at each of t's input places. For every one of t's output places

p_, insert a TokenArrival event with time-stamp T,_m + (it into the event list. Finally,

insert an EndFiring event with time-stamp T, im + (it into the event list.

Case: EndFiring Measure and record statistics.

3. Return to step 1 if termination conditions are not met.

It may seem curious to generate new TokenArrival events as a result of BeginFiring process-

ing, instead of EndFiring processing. This reflects our deliberate choice to highlight lookahead--at

the time a transition begins its firing we can predict exactly when tokens generated by the firing

appear in their new places. Our parallel solution exploits this. Lookahead is not necessary in purely

serial simulations.

As discussed in [17], there are a number of ways one can augment TPNs. Some arcs inhibit

rather than enable transitions, meaning that the associated place must be empty for the transition

to fire. Priorities may be assigned to decision place output arcs, to give some control over transition

enablement. One may use random firing times, one may associate a probability distribution with

the output arcs of a transition---on firing, one randomly chosen output place receives a token.

Additional modifications include the association of colors with tokens, and allowance for an arc



to carry more than one token when it fires. All of these have important applications, and can be

incorporated directly into the framework we propose.

In the section to follow we show how to implement this algorithm on a parallel computer.

3 Synchronization

We believe that parallel simulation will be practical primarily when large simulation models are

distributed over a moderate number of processors. The usual use of discrete-event simulations is

to construct confidence intervals from simulation output. Confidence intervals call for independent

replications, and there is scarcely any easier way to exploit parallelism than to concurrently run

independent replications. However, one rarely wants to run more than, say, twenty replications of

a long-running simulation, because the width of a confidence interval decreases only in proportion

to the inverse square root of the number of replications. Given a 500 node multiprocessor, one is

more likely to devote 25 processors to each of 20 independent replications than one to devote an

independent replication to each processor. Simulation is frequently used as an exploratory tool,

aiding a decision based on one long run, which we wish to execute as quickly as possible. Thus we

believe that techniques for parallelism have practical interest. We also believe that parallel simu-

lation will be useful primarily on large simulation models. Small simulation models are simulated

sufficiently quickly on workstations or PCs. Parallel architectures offer increased main memory size

over conventional architectures, which helps to avoid thrashing virtual memory.

For the reasons outlined above we have concentrated on parallel simulation techniques suitable

for large simulation models. We have studied a conservative synchronous approach to synchro-

nization and demonstrated analytically that it can achieve good performance when the size of the

simulation model is large [26, 25]. The solution we now develop for TPN simulations is an applica-

tion of this approach to the TPN problem. We extend our previous work by tailoring the approach

to work around TPN features that cause difficulty for parallelized simulation, to take advantage

of TPN features that ease parallelized simulation, and to develop a new TPN-tailored relaxation

based synchronization algorithm.

The remainder of this section is divided into three parts. The first provides general information

about synchronization. The second discusses the basic synchronization itself, while the third part

extends the method to TPNs where transition firings may be preempted.

3.1 Preliminaries

We assume that the TPN model is partitioned by the modeler into logically cohesive subnets we

call Logical Processes, or simply, LPs. LPs are mapped to processors. Every processor maintains

its own simulation clock, and an event list for every LP. A min-heap maintained over the minimal

elements of each LP's event list allows us to treat the processor as having a single event list. One

processor communicates with another by sending a time-stamped message. In our framework that

message always reports the arrival of a token to some place, and the time-stamp records the arrival
time.



All places and transitions in a given LP will always be executed on the same processor, even

if the LP's processor assignment changes. The problem of effectively aggregating a large netlist

description of a TPN into LPs is difficult (but see [5] and [33] for nascent attempts), and perhaps

unnecessary. Petri nets are commonly developed using graphical tools; these tools frequently let

the modeler aggregate and then duplicate some subnet, e.g., a processor or an interface logic

module. These are excellent candidates for LP aggregation, and it is a simple matter for a modeler

to graphically communicate such aggregation to the tool. We have done exactly this in our tool

pntool[21], that serves as the graphical front-end for our automated TPN parallel simulation

testbed.

Our solution requires that two rules be followed when aggregating (and pntool enforces these

rules).

, All input places for a transition are assigned to the same LP as the transition.

• Every transition t with an output place that is assigned to a different LP than t must have a

non-zero firing time.

The first rule vastly simplifies the logic needed to decide when a transition may fire. Alternate

synchronization schemes for timed Petri nets do not make this assumption [36, 14]. The second

rule guarantees a lapse of simulated time between an event e on one processor, and any subsequent

event that e may cause on another. With minor modifications this requirement could be relaxed,

but with increased communication.

The event processing logic on every processor is that of Section §2, save that the code must some-

times send a TokenArrival message rather than generate a TokenArrival event. Our protocol

controls these inter-LP message communications. It relies on two key activities: the pre-sending of

TokenArrlval messages, and the computation of lower bounds on the time-stamp of the next mes-

sage an LP might send to an off-processor LP. We have already introduced the notion of pre-sending

TokenArrival messages--these messages are sent as part of BeginFiring event processing, rather

than EndFirlng event processing.

Given that TokenArrival messages are pre-sent, one can always compute a lower bound on

the time-stamp of the next message a processor will generate. Let /fmin be the minimum firing time

among all border transitions, those with input and output places assigned to different processors.

Let Tsira be a processor's simulation clock after completing some event's processing. The next

message sent off-processor cannot have a time-stamp smaller than Ts_m +tf,_m, for only BeginFiring

events send messages, and every such message's time-stamp is at least _min larger. A potentially

larger conditional bound can be constructed with very little extra cost by replacing Tsi,_ with

the least time-stamp on any event in the event list, say Erain. We take Emin = _ if the list is

empty. The validity of this bound is conditioned on the processor not receiving a TokenArrival

message with a time-stamp smaller than Emi,_. We have shown in [26] that bounds conditioned on

the absence of further message arrivals suffice for our protocol. Our parallel solution assumes the

existence of a routine BoundNextMsgTime() that finds Em_,_ and returns the sum Em_,_ + _min.

We turn next to a discussion of the protocol and its integration into the simulation algorithm.



3.2 Parallel Algorithm

The following is a brief overview of the protocol. Suppose that all simulation events in all processors

up to (but not including) time Ts_,n have been simulated. Our protocol will compute a simulation

time w(Ts_m), such that all events with time-stamps in the window [Ts_m, w(Ta_m)) can be executed

without further communication between processors. The openness of the upper window edge is de-

liberate, for reasons to be made clear. Off-processor messages generated in the course of processing

BeginFiring events may be sent and received directly, or may be buffered and delivered at the

end of the window processing. A received message is converted into a TokenArrival event and

is inserted into the event-list. Messages sent between co-resident LPs are converted immediately

into events. If programmed properly, there is insignificant additional overhead due to on-processor

inter-LP communication. Processors synchronize globMly upon simulating up to time w(Ts_m), and
the process repeats.

The time w(Tsim) must be chosen carefully, as follows. At the global synchronization point,

each processor calls BoundNextMsgTime(); w(T,i,n) is defined to be the minimum conditional

bound returned, among all processors. The rain-reduction can performed in 0(log P) time on most

multiprocessors, where P is the number of processors. We have proven elsewhere [26] that every

future off-processor message the simulation will send has a time-stamp of at least w(Tsi,n). Thus,

all inter-processor messages that the simulation will generate in the interval [T,_m, w(T,_,n)) have

already been identified, and converted into events. Every processor may therefore simulate its

submodel up to (but not including) time w(Ts_m) without danger of receiving a "late" message--

the exclusion of time w(T:_m) from the window is now understood, since a message at that time

might be generated by an event inside the window. This independence property leads us to the

protocol given below.

1. For every initial token, insert a TokenArrival event in the appropriate processor's event

queue, with time-stamp 0.

2. Set sl =0, set i-- 1.

. For every processor, call BoundNextMsgTime(). Use a logarithmic time rain-reduction to

compute and distribute w(s_)--the minimum value returned by any BoundNextMsgTime()
cal].

. Every processor simulates up to time w(si), independently of and in parallel with all other

processors. Event processing is that of Section §2, save that TokenArrival events destined

for off-LP places are passed as time-stamped messages. Messages between co-resident LPs

are converted immediately into events.

. The processors synchronize globally, then every processor accepts any remaining unreceived

messages. A processor consumes a received message simply by inserting the described event
into its event list.

6. Define 8i+1 = W(Si) , then increment i. Check termination conditions, return to step 3 if the

termination conditions are not satisfied.



The reasonfor this protocol'ssuccessonlargemodelsis intuitive. Imaginethe simulation time

line marked wherever an event occurs. This protocol slides a window of width _fmln or greater

across the time-line; processors execute independently during a window. If _fmln remains fixed,

as the model size grows the density of events in a window increases. The protocol's overhead is

independent of model size, and so is amortized over an increasing number of events. The protocol

can identify many events even when there is no minimum firing time. Applying the results of [26]

to TPNs, we are assured that if firing times are random and exponentially distributed, then the

number of events in a window grows without bound as the model size is increased.

3.3 Tokens Committed at Firing

We are also able to handle TPNs with a different firing rule: if a transition with firing time _f is

first enabled to fire at time s, and remains enabled throughout time interval [s, s + _f], then (and

only then) the firing occurs a.t time s + _f and token counts are adjusted at the transition's input

and output places. Due to the influence of decision places, we cannot commit to the effects of firing

a transition until the full enablement duration has elapsed. For instance, suppose transitions tl

and t2 share a input decision place p. A token arrives at p and enables both of them. The first to

fire consumes the token at p, and so disables the other. A serial simulator would post EndFiring

events for both transitions at the instant they become enabled. Then, the first EndFiring event

processing will include a re-analysis of the status of all transitions that might have been disabled;

the EndFiring event for each such is removed from the list. Consequently, in the parallel simulation

one cannot safely pre-send TokenArrival messages for preemptable transitions.

The easiest solution is to prohibit errant messages from being sent. We simply constrain LP

formulation further so that if t is a transition with a decision input place, then all of t's output

places are assigned to the same LP as t. This rule ensures that erroneous TokenArrival arrival

messages are never sent, since nothing can interfere with the firing of a border transition once it is

enabled.

The solution above may cause a model to be so over-aggregated so that opportunities for

parallelism are limited. If this is the case, it is possible to deal with the situation in a number

of ways; however all require increased communication. One method is to have TokenArrival

messages be sent as before, recognize that those from transitions with decision input places are

tentative. Tentative TokenArrival messages are treated as "appointments" [24]. A processor Q

receiving one with time-stamp s from processor P will not simulate any event with time-stamp s

or greater until it is given permission by P. If P ends up canceling that TokenArrival event, it

immediately sends a message to Q notifying it to cancel the event. If P ends up actually simulating

the associated EndFiring event, then it sends a message to Q indicating the TokenArrival event

is correct. Deadlock is avoided if one ensures that there is a positive delay _f > 0 between when the

receipt of a TokenArrival message to an LP can affect the behavior of any of its border transitions.

If event cancellations are rare, then we may be able reduce costs by using optimism, integrating

our protocol with the method of synchronous relaxation [7]. The idea is to simulate a window

as before, with pre-sent TokenArrival messages, which we assume are correct. We can always



detectwhena tentativemessagewasincorrect,becausethe sendingprocessorwill simulatethe
disenablementof the transitionwhosefiring wasalreadyreported.That "error" is easilycorrected
by sendinganeventcancellationmessageaftertheerroneousTokenArrival message.Thewindow
is resimulatedthen. If moreerrorsarediscoveredin the nextpass,then they arerepairedand the
windowis resimulatedagain.This processcontinuesuntil the windowis simulatedwithout error.
Convergenceis assuredbecausethecorrectionto theearliestfault in an iterationcannotbeundone
by anylater iteration. State-savingisrequiredin orderto supporta window'sresimulation.This,
and the costof repeatinga window'ssimulationarethe mainoverheadsof the method.

Windowpropertieshelp minimizerelaxation'scommunicationoverhead.In the generalsyn-
chronousrelaxationmethoda correctionmayendup causingthe transmissionof a messagethat
hasneverbeenseenbefore.Thishasnontrivialramificationson thetypesof error correctionsthat
haveto beanticipated.However,wecanusesynchronousrelaxationsothat the only issueto be
resolvedby iteration is the validity of tentativeinter-processorTokenArrival messages.

To reducemessagecancellationcosts,wemodify the protocolsothat anymessagewith time-
stamps _ is buffered until the simulation reaches the window [s, w(w)) containing s _. The message

is sent just prior to simulating [s,w(s)). Holding back the message this way does not affect the

value of w(s) computed (because the TokenArrival message being withheld has a corresponding

EndFiring event with the same time-stamp in the sending processor's event list). This arrangement

permits a processor to cancel any tentative message locally (i.e., without interprocessor communi-

cation) in any window prior to the one containing its arrival time. Of course, if sent, the message

might still be cancelled by some event between times s and s _. The processor P that originally

sent the message to Q discovers the cancellation conditions, and sends a cancellation message after

it. Receiving the cancellation, Q changes the validity status of the message, recovers its state at s,

and resimulates the window.

The relaxation algorithm executed by each processor is presented below. We presume that

every tentative message has a "valid/invalid" bit. It is possible for an event cancellation message

to be itself canceled, so we define the effects of a cancellation on a tentative message to be an

inversion of its valid bit. In the description below, set Active contains all tentative messages sent

by the processor in the present window, and Buffered holds all known messages generated by the

processor which have not yet been sent. Cancellation message generation is handled simply. During

any iteration, the processing of an EndFiring event for transition t checks to see if (i) an associated

tentative TokenArrival message in Active or Buffered was considered to be valid or not in the

previous iteration, and (ii) whether any tentative TokenArrival message in Active or Buffered

cancelled by this event was considered to be valid in the previous iteration. These checks are

performed on status bits of messages in Active and Buffered. The effect of a conflict between the

valid bit and the simulation state is to invert the valid bit. If the errant message is in Active, a

cancellation message is sent to the message's recipient.

The relaxation-based algorithm's description follows.

1. For every initial token, insert a TokenArrival event in the appropriate processor's event

queue, with time-stamp 0. Assign sl = 0, i = 1, Buffered=O, and Active=O.

9



2. Compute and distribute w(si).

3. Move all messages in set Buffered with time-stamps less than w(si) into set Active. Set the

valid bit in each message in Active, and send copies of all messages in Active to recipient

processors.

4. Synchronize, and store received messages. Call this set Received.

window are tentative then checkpoint state.

5. Convert all valid messages in Received into events.

If any messages for this

. Every processor independently up to time w(si). Generated messages to be sent off-processor

are placed in Buffered. Validity of messages in Active and Buffered is checked on EndFiring

events. With any inconsistency, the message's valid bit is inverted; if the message is in Active

a cancellation message is sent and the processor is considered to have faulted.

. Synchronize, and determine whether any processor faulted. If not, terminate (if appropriate)

or set si+l = w(si), i = i + 1, Active=Received=O, remove invalid messages from Buffered,

and goto step 2.

8. (Faulty window processing) Process cancellation messages by inverting valid bits on cancelled

messages in Received.

9. Synchronize. Any processor receiving a cancellation message recovers its checkpointed state,

and goes to step 5. All other processors go to step 7.

We have not yet implemented this algorithm. Issues to be examined are the cost of state-saving,

the number of resimulations that are required on average to determine the correct behavior, and

optimizations that permit a processor to realize it is insensitive to a message cancellation. If its

costs turn out to be low, then synchronous relaxation is an attractive method for exploiting more

parallelism than our strictly conservative method.

4 Automated Mapping

Our approach to the mapping problem has two components. First, at load-time, the LPs must

be assigned to processors without knowing either the distribution or intensity of workload. This

is accomplished using a static mapping algorithm, operating on topological estimates of workload.

Secondly, at run-time, the program monitors the simulation activity of each LP. Based on these

measurements, the program periodically decides whether to redistribute the LPs. The decision is

based on projected finishing times under the present mapping versus a proposed mapping (com-

puted using the static mapping algorithm applied to the measured workload). In this section we

develop the static mapping algorithm and analyze some of its properties. Then we describe the

dynamic remapping decision policy that governs when remapping occurs, and its implementation.

Performance data presented in Section §5 is taken from runs managed by these techniques.
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4.1 Static Mapping

Suppose that the TPN has been partitioned into a set of n LPs, and consider the weighted LP graph

naturally induced. We need to assign an execution weight el to each LP i and a communication cost

wij between every pair of LPs i and j. ei reflects the amount of computation time per simulation

time unit expended on LP i, and w_j reflects the communication time per simulation time unit

expended on communication between LPs i and j. Before running the simulation these values are

unknown. We initially guess then by setting ei equal to the number of places and transitions in LP_,

and wij to the the number of arcs crossing between LPs i and j. The cost of parallel processing

is best captured if we seek to minimize the load on the most heavily loaded processor, where the

cost of a processor's load is defined to be the sum of the execution weights of its LPs, plus the sum

of the costs of its LP's edges that are "cut" by the mapping (i.e., edges whose LPs lie on different

processors). Formally, if Rk(m) is the set of LPs assigned to processor k under mapping m, then
the bottleneck cost of m is

- - jeR_(,_) jeR_(,_),i_Rk(,_)

Unlike many other objective functions in the mapping literature, this one explicitly considers par-

allelism in both computation and communication. Fast algorithms for finding optimal mappings

are known when the LPs are arranged in a linear order, and the mapping satisfies the contiguity

constraint [3, 11, 27, 6]. This means that the workload assigned to a processor must be a con-

tiguous subchain of LPs in the linear order. If we are to use these techniques we must rationMly

order the LPs, attempting to force the highest rates of communication to be between co-resident

or nearby LPs. Since the mapping algorithms themselves are not new, we focus on the problem of

linearization. Following this we prove that the algorithm finds optimM mappings on balanced ring

and hypercube graphs, and we explain why many different linearizations enable the chain mapping

Mgorithm to find the optimal solution.

4.1.1 Linearization

We seek an ordering that concentrates highly communicating LPs close together everywhere through-

out the ordering. A global view rather than incremental view of ordering seems appropriate.

However, even the simplest quantifications of an ordering create a computationaUy intractable op-

timization problem. For example, the problem of maximizing the sum of weights between adjacent

(in the ordering) LPs is a variation of the famous traveling salesman problem, which is NP-complete.

We desire even stronger conditions on our linearization, in keeping with its eventual usage. The

linearized workload is to be partitioned into contiguous subchains, so that communication between

LPs in the same subchain is essentially free. To measure this, consider an ordering _r and the

partitioning of LPs under 7r into contiguous subchains of equal length 2j (excepting the last one,

which may be shorter). Let Sj(_r) denote the sum of weights on edges between LPs assigned to the

same subchain, the sum being taken over all subchains. The larger Sj(_') is, the less communica-

tion would occur between processors if the chain were partitioned as assumed. An ordering 7r that
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maximizesSj(z) for all j = 1,2,..., [log [G]] - 1 reflects in part our desire that the more closely

LPs communicate, the closer they are in the ordering.

We have developed a greedy approach called the match/merge algorithm, based on a maximal

weight matching algorithm [35]. Given an undirected graph (G, E) with n vertices and m edges

with nonnegative edge weights, a matching is a subset M C_ E constrained so that no two edges

in M share a vertex. A maximal weight matching maximizes the sum of edge weights possible in

a matching. Sophisticated algorithms determine a maximal matching in O(nmlogm) time [35].

Applied to our problem, a maximal weight matching identifies a good way of simultaneously pairing

together LPs with high communication costs.

Our algorithm will ensure that LPs paired under the matching will be adjacent in the ordering,

consequently any ordering ,r it discovers will always maximize SI(z). A single application of a

matching algorithm will not linearize the LPs; we apply the algorithm repeatedly on increasingly

smaller aggregated graphs. The graph size is reduced by merging paired LPs, into super-LPs (and

any LP not paired in the matching is also considered to be a super-LP). Edges between super-LPs

are defined naturally: an edge between super-LPs A and B exists if A contains an LP a and B

contains an LP b such that a and b share an edge in the original LP graph. The weight of an

edge in the super-LP graph is the sum of all edge weights of edges it represents, i.e., the total

communication volume between LPs in A and LPs in B. Following this reduction, we apply the

same matching algorithm to the super-LP graph. If super-LPs A and B are paired, then in our

ordering the LPs represented by A and B will be adjacent in the sense that no LP from a super-LP

other than A and B can lie between any two LPs in the concatenation (A, B). Following a pairing

of super-LPs we can reduce the graph as before, and continue the process until the entire graph has

been reduced to a single super-LP. The object at each step j of the algorithm then is to maximize

Sj(Tr), given the existing grouping into sets of size 2_-1. The algorithm is described below.

1. Initialize n = number of LPs, index LPs from 0 to n - 1. Initialize edge weights wAS for all

LPs A, B. ( WAS = 0 if A and B do not communicate; the graph is therefore considered to

be complete).

2. Find maximal weight matching M.

3. Order the super-LPs: for every {A, B} E M, if index(A) < index(B) then C = (A, B) else

C = (B, A); index(C) = min{index(A), index(B) }.

4. Renumber the merged super-LPs to maintain their represent ordering, but to range over

[0, - l].

5. If some LP Z is not matched under' M, then index(Z) = [_].

6. For all (A, B), (C, D) matched above,

W(AB)(CD) -- WA G q- WAD q- WBC q- WBD.

7. If n is odd then n = [_J + 1, else n = [_J. If n > 1 goto step 2.

12



The ordering of merged two super-LPs ((A, B) vs. (B, A)) is specified in terms of inherited

index numbers. This is somewhat arbitrary. While values of Sj(z') are insensitive to this choice,

other objectives (such as distributing workload evenly along the chain) are not. The match/merge

process is depicted naturally by a binary tree whose leaf vertices represent original LPs, and where

parent-child relationships reflect merging decisions. Given the merging decisions, each possible

linearization is uniquely determined by a set of decisions that order each interior vertex's children.

As there are n- 1 interior vertices, then there are 2n-1 different linearizations derivable from a

given set of match decisions. If the decision is made that child A precedes child B, the effect is

that all LPs descended from A will precede all LPs descended from B in the ordering. It might be

useful to delay ordering decisions until the tree is constructed, and then choose orderings to spread

out the workload as well as to better localize the communications. We have not yet explored this

problem, but feel it is worthy of future attention.

We can bound the deviation from optimal of the linearizations produced by this method. Let

_.a be a linearization produced by our heuristic, and for every j let _opt,,j be a Unearization that

maximizes Sj(_') over all linearizations _'.

Lemma 1 For all j = 1,2,..., [log IGI] - 1,

< (2J

Proofi Fix j, and let $1 be the set of first 2J vertices under _r_pt, $2 be the second set, and

so on. The vertices in every set Si have up to 2J(2J - 1)/2 number of edges between them, with

nonnegative weights. These edges can be partitioned into 2j-1 disjoint sets Ei,k = {(u,v)]u =

2i+e < v = 2i+e+k,e = 0,1,...,2J-1},for k = 1,2,...,2J- 1. Ei,kis thus the set of edges

in Si between vertices that are k distance, without wrap-around. Each E_,k is a matching on Si,

although not necessarily a complete matching. It follows that for every k = 1,...,2 j - 1, UiEi,k

is a matching on the unordered graph (G, E), and hence has cost no greater than Sl(_rh). There

being 2J - 1 such matchings, we have

Sj(x_ pt) g (2 j - 1)S,(_rh).

The result is obtained dividing through by Sj(_rh).

Note that since Sj(_r h) > S_(_r h) for all j, we get a loose "pre-computation" bound of 2 j - 1.

This bound will be sharpened given measured values of $1(7r h) and Sj(_rh).

Another feature of a match/merge linearization is that the sum of edge weights between adjacent

LPs is not less than half of optimal.

Lemma 2 Let w °vt be the maximum possible sum o.f edge weights between adjacent LPs in any linear

ordering, and let wh be the sum of such weights under a linearization produced by the match/merge

algorithm. Then w°vt/2 < w h.
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Proof." Let _r°vt be a linearization that maximizes the sum of weights between adjacent LPs, and

renumber the LPs with respect to _r°pt. Let Seven be the set of edges of the form (i,i + 1), for

i even, and let Sodd be the set of edges of the form (i,i + 1) for i odd. Both Seven and Sodd are

matchings, hence the sum of edges in either is no greater than Sl(Trh). This gives

0,_°pf ( 2Sl(a "h) __( _,0 h,

from which the result follows. •

This result is essentially the same as a simUar one for a TSP heuristic based on a matching step

[19].

To accelerate solution time (possibly at the expense of solution quality) we normally use a

O(n)-time approximation to the maximal weight matching step, called a "stable" matching. This

is one in which it is not possible to find matched pairs (A, B), (C, D) such that

max{wAc + WBD, wBC "4- WAD} > WAB -4- wCD.

Such an algorithm is obtained from a modification to the stable marriage problem [31] for bipartite

graphs. The sense of the original stable marriage solution is to loop over all "males", each one

attempts to become engaged by proposing to the "females" in decreasing order of preference. If a

suitor finds a previously engaged debutante such that the debutante prefers the new suitor to her

engaged, the old engagement is broken and a new one forged, and the jilted suitor is left to pick

up and continue his search for a mate.

Restated in our context, every LP orders all other LPs with which it communicates. Higher

communication implies higher preference. We cannot immediately apply the stable marriage algo-

rithm, as we lack distinct sexes. A minor modification to the algorithm has the effect of selecting

sexes: once an LP becomes engaged playing the role of a debutante, it is not later considered to be

a suitor. This effectively separates the LPs into two equal sized groups; the matching found will

be stable with respect to the sex roles discovered during the process.

The modified method is called the pair/merge algorithm. The matchings it produces are iden-

tical to those of the match/merge algorithm on certain networks (e.g., rings, meshes, hypercubes)

with unit edge costs, provided the match/merge algorithm is encoded with suitable tie-breaking

rules.

The effects of pair/merge using stable matching on a 3-dimensional hypercube and on a 2-

dimensional mesh are illustrated in Figure 1. Ties between equal weighted edges are resolved in

favor of LPs with lower index numbers (this is an important aspect of the match process when

matching balanced graphs). We see that the hypercube with equal weight edges collapses along

dimension lines, and that the mergings in the mesh alternate between dimensions. Linearizations

based on these processes are clearly dealing with the global structure of the graph rationally.

Petri-net models of parallel architectures exhibit high connectivity locally, for instance, reflect-

ing the interconnection pattern of a modeled parallel architecture. This feature has an impact on

the algorithmic cost of linearization. If each of n LPs communicates with every other LP then there

are O(n 2) distinct inter-LP communication costs to calculate, and the computation of preferences
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Figure 1: Behavior of match/merge algorithm on a hypercube, and mesh

requires _(n 2 log n) time. However, these costs drop to O(nB) and f2(nB log B) if an LP commu-

nicates with no more than B others. This makes a real difference when n is large, and B << n. It

is also true for our CM-1 router example.

The cost of a matching step is dominated by the cost of computing and sorting inter-LP com-

munication costs. The first step exacts an O(nBlogB) cost. At the second step the number

of super-LPs involved is halved, but in the worse case the number of connections a super-LP

has doubles. This gives the second step a cost of O(nBlog(2B)). In general the i th step costs
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O(nBlog(2i-lB)); the cost sum over all logn steps is

0 [y].nBlog(2i-lB) = 0 nB_(logB+log2 i-l)
\ i=1 i=1

= 0 (nB(logB)logn+ nBlog2n)

-_o
On certain graphs the pair/merge linearization is optimal in the sense that the linearization it

finds simultaneously maximizes Si(_r ) for all j. We demonstrate tiffs result for rings and hyper-

cubes. In both cases the communication topology is very regular, and we assume unit edge weight

costs. This situation corresponds to an initial mapping of a homogeneous Petri net model of such

architectures, prior to run-time measurement of execution and communication costs. This is still an

important problem, because even with measured costs the model may well be uniformly weighted.

This in fact was an unexpected consequence of our CM-1 router example.

LP enumeration has a definite affect on the matches made, and a little care is required for our

optimality results to hold. For the specific cases we consider we suppose the LPs to be enumerated

in a "natural" way. We presume a ring is enumerated so that adjacent vertices in the enumeration

share a communication edge; we presume the usual enumeration of a hypercube where vertex i and

j share an edge if and only if the Hamming distance between i and j is exactly one.

Lemma 3 Let (G, E) be a ring, enumerated naturally, with unit edge weights, and IG I = 2k. Then

for all j = 1,2,..., k, any linear ordering _r produced by the pair/merge algorithm maximizes Sj( Tr).

Proof: For any integer j, it is obvious that the partition into 2 k-j pieces maximizing the number

of edges between vertices in a common partition element is obtained by grouping the first 2j vertices

together, then the next 2j, and so on. This is precisely the grouping defined by the pair/merge

algorithm. |

Lemma 4 Let (G, E) be a hypercube of dimension k, suppose that G is enumerated naturally, and

that all edges have unit weight. Then for all j = 1, 2,..., k, any linear ordering _r produced by the

pair/merge algorithm maximizes Sj (_r).

Proof: We first induct on z to prove that the number of edges between members of any subset

of x vertices is no greater than (xlogx)/2. The base case of x = 1 is trivially satisfied. Suppose

then that the claim is true for any subset of size x - 1 or smaller, and choose any subset A with x

vertices. Split A evenly into two subsets A1 and A2. The number of edges between vertices in A is

the sum of the edges on A1 plus the edges on A2 plus the edges between them. There are at most

[z/2J edges between them, and by the induction hypothesis the sum of edges on A1 and on A2 is

no more than (x log(x/2))/2. Therefore the number of edges on A is no more than

• log(z/2) < xlog(x)
L /2J+ 2 - ----2--'

16



which completesthe induction. Now observe that when x = 2 i the bound is met, and is met

by sets that themselves form hypercubes (which have i2 i-1 edges contained within them). Now

at every step i the pair/merge algorithm merges hypercubes of dimension i - 1 into hypercubes

of dimension i (a consequence of G being ordered naturally). Thus Sj(r)is maximized for each j. •

Rings and hypercubes are special cases of k-ary n-cube networks. We believe our results might

be generalized to such networks where k is a power of two.

4.1.2 Chain Mappings

Suppose that some linearization of the LPs is given. The most general formulation of the re-

maining mapping problem allows any two LPs to have non-zero communication costs. A dynamic

programming formulation solves the problem in O(Pn _) time, P being the number of processors.

To see this, let C(j,p) be the optimal bottleneck cost achievable mapping LPs 1 through j onto p

processors. Then the principle of optimality asserts that

J J

C(j,p) = n_i<n{max{C(i,p- 1), Z ek + Z Z Wkm}}.
k=i+l k=i+l rn<i,m>j

Note that this solution permits non-adjacent LPs to have non-zero communication costs, whereas

previous solutions are restricted to the alternate case. Not surprisingly, under the more constrained

assumption the algorithms have lower complexity.

There are instances of the mapping problem where the pair/merge/map approach will find the

minimal bottleneck mapping. We show this for rings and hypercubes with unit communication

costs and large enough common execution costs e_, for each LP. The second result enumerates the

many equivalent linearizations derivable from a given optimal mapping. This result reflects the

resilency of restricting our attention to chain mappings.

The first conclusion is obvious.

Lemma 5 Let (G, E) be a ring, enumerated naturally, with unit edge weights. Suppose every vertex

has common weight e_. Then for any power-of-two number of processors P, the pair/merge/map

algorithm minimizes the bottleneck over all possible partitions of the ring into nonempty P sets.

Proof: Under any mapping, every processor has a communication cost of at least two. The

linearization produced by the pair/merge algorithm gives every processor a communication cost of

exactly two. The chain mapping algorithm will map no more than [IGI/P] LPs to any processor,

yielding a bottleneck cost of 2 + e,o [IGI/P], which is optimal. •

The second conclusion shows that in balanced hypercubes, for moderate values of e_ it is optimal

to assign equal sized hypercubes of smaller dimension to each processor--as does pair/merge/map.

Lemma 6 Let (G, E) be a hypercube, enumerated naturally, with unit edge weights, and IGI = 2 k.

Suppose every vertex has common weight ew > k + 2/(ln 2). Then for any power-of-two number

of processors 2j <_ 2 k, the pair/merge/map algorithm minimizes the bottleneck over all possible

partitions of the hypercube into up to 2 j pieces .
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Proof." Consider a processor assigned any x LPs. The proof of lemma 4 shows that the sum

of edges between LPs on that processor is no greater than (x/2)logx; hence there are at least

kx - 2x log x edges to LPs on other processors. The function

f(x) - e_,x + kz - 2z log x

is thus a lower bound on the cost of assigning x LPs to a processor. Note that the bound is achieved

if the set forms a hypercube. Considering x as continuous, we have

2

f'(x) = ew + k - 21ogz - ln'-'2"

Note that logx is maximized when equal to k, hence f is increasing over x E [0, 2 k] ife_ _> k+2/ln 2.

2J 2kIf Xl, x2,.., x2_ are workload assignments (xi >_ O, _i=1 xi = then the function

g(xl,••.,x2,)= max{/(xl), f(x2),...,f(x2,)}

isa lower bound on the bottleneckcostof the assignment. Since f isincreasing,g isminimized

when the maximum zi isas small as possible---thatis,when the xi'sare identically2k-j. This

situationisachievedwhen the LPs are partitionedinto2J hypercubes,furthermorethe value ofg

then isalsoexactlythe bottleneck.IfG isenumerated naturally,the pair/merge/map algorithm

will produce this assignment. •

Other situations where the pair/merge/map approach finds optimal solutions occur as a result of

the definition of the bottleneck cost. Any solution that minimizes the bottleneck can be embedded

in a linearization. For example, given the optimal mapping we can renumber the LPs assigned to

processor 1 starting at 1, then carry over the enumeration to LPs assigned to processor 2, and so

on. However, a large number of linearizations are equivalent in the sense that the chain mapping

algorithm will find the optimal bottleneck on them. For example, any permutation of the processor

ordering does not affect the bottleneck cost, and does not confuse the chain mapping algorithm.

Likewise, within the LPs assigned to a processor there is an insensitivity to their ordering within the

processor. The net effect is that given an optimal solution and an associated linearization r °pt, there

are a number of permutations of 7r°pt that will not affect the sets of LPs that are co-resident. Given

any one of these linearizations the chain mapping algorithm with discover the optimal bottleneck.

Lemma 7 For any mapping problem involving m Les and P processors and minimized bottleneck

cost b, there are at least P! × F(m/P) P different linearizations upon which the chain mapping

algorithm will discover a solution with cost b.

Proof: Suppose that a solution minimizing the bottleneck value b assigns ni LPs to processor i,

for i = 1,2,..., P. From the discussion above there are at least P! × l'IiP=l hi! different lineariza-

tions for which the chain mapping algorithm will produce a solution with bottleneck cost b. In the

continuous domain, r(ni) = ni!, and for fixed _P=l ni = m the product I-IP=l r(ni) is minimized

when nl = n2 = ... ne = m/P. •
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4.2 Dynamic Remapping

Our approach to dynamic remapping has essentially been laid out before, in [28], with an emphasis

on physicaJ computations that exhibit distinct phases. The issue there is to determine with sufficient

confidence that a phase change has occurred and that performance will benefit from remapping.

The general approach is to periodically consult an "oracle" that judges whether it is worthwhile

to remap now. The oracle's decision is not immediately acted upon though, it is used to update

(via Bayes' Theorem) a gain probability that performance will improve by remapping now. The

optimal decision policy was shown to be a threshold policy--if the gain probability is larger than

some step-specific threshold, then one ought to remap. As computation of the optimal decision

thresholds proved to be impractical, a heuristic was proposed to use a constant, high, threshold.

We apply this work to the present context, as follows. Periodically, just prior to the beginning

of a window's processing the processors all coordinate to make a remapping decision. The decision

is based on measurements of the average processing cost undergone so far by every LP. As the

simulation runs, a processor keeps track of the number of events executed so far on behalf of each

LP. The processor aJso keeps track of the totai time spent so far processing events, by measuring

the time spent by a routine which in one call processes all the events done by a processor in a

window. With these figures we compute the average time spent by each LP processing events in

a window; the average may be exponentially decayed to allow sensitivity to time-varying averages.

The averages become the LP weights for the static mapping algorithm. It makes a great deal

of sense to balance based on these per-window averages, since windows are separated by barrier

synchronizations. Furthermore, given these averages, a prospective mapping, and knowledge of the

simulation's termination time (in simulation time) we may estimate the remaining time required to

complete the simulation under the assumed mapping. Our approach then is to have an oracle routine

compute the best mapping given the present LP workload averages, then predict the expected time

to remap (with an estimated remapping cost of 1 second) and finish the computation under the

new mapping. The oracle similarly predicts the expected finishing time if one does not remap.

The oracle recommends remapping if its projections suggest a performance improvement of at least

10%. This judgement is used to update the gain probability. The purpose of the 10% padding

is to protect from underestimating the remapping cost (which isn't known until it is observed).

Since we have observed that the initial mapping can be truly inferior, we modified the heuristic so

that a remapping is performed automatically if the oracle judges the new mapping to be twice or

more faster than the old. In our experiments we have seen remapping triggered both by the gain

probability crossing the threshold (which requires 2-3 consecutive positive oracle judgements), and

by the twice-as-good rule. The remapping logic is not disabled after the initial remapping; if the

initial remapping decision turns out to be very wrong it is still be possible to correct it. Similarly,

if the workload has a time-varying average, then the decayed sample averages can reflect this, and

trigger a remapping.

Our implementation of this policy deserves comment, as it would be easy to implement the

logic inefficiently. The basic idea is to provide every processor with an estimate of every LPs

workload, and then have every processor execute exactly the same code and make exactly the
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sameremappingdecision as all the others. We attempt to distribute workload information with

relatively little communication, as follows. In a first step we compute the maximum and minimum

LP loads throughout the system, using a software combining tree that operates on vectors (e.g., a

global reduction min on vectors). Such reductions are supported by fast library routines on Intel

multicomputers. Next, every processor discretizes the range of LP workloads into 16 levels. Then,

for each of its LPs, a processor generates a 4-bit code describing which of those levels best describes

the LPs load. These 4-bit codes are inserted into an array, initially empty, of codes for all LPs.

The processors engage in a global bitwise-OR reduction on this table, which serves to distribute the

code information to every processor. From these codes the processors can now reconstruct the same

approximate workload levels as any other processor, and execute the remapping logic based on these

estimates. Every processor computes which LPs it must shed, and which ones it will receive. The

actual disengagement of an LP from one processor and integration into another involves some work

related to bundling and unbun.dling state information, and keeping the processors data structures

up to date.

We have chosen to ignore communication costs in the mapping step, for two reasons. First,

the number of different communication values is quadratic in the number of LPs, which implies

a great deal of information to gather and distribute at run-time. Intuition suggests that if the

linear ordering is successful in keeping closely communicating LPs together, then ignoring the

communication costs while mapping should not grossly affect performance. This does beg the issue

of recovering from a bad linearization.

Three areas of the scheme above bear further investigation. The bit-vector approach to dis-

tributing load information is efficient for small-to-medium numbers of LPs, after which the com-

munication cost can be overly high. Also, certain parameters may need dynamic adjustment,

particularly the frequency of computing tentative mappings, and the decay parameter for workload

averaging. Finally, dynamic re-Unearization needs investigation.

5 Empirical Study

Our empirical study considers TPN models of a slotted ring network, and of the Connection Machine

CM-1 global routing network. Our models do not attempt to accurately capture all aspects of

behavior; instead they are intended to he representative of large TPN problems to which one might

apply parallel processing.

The CM-1 network model is based on the description in [1]. It captures the dimension-by-

dimension structure of message-passing, the effects of limited buffer space, and the interaction

between a router and the mesh of processors that directly access it. Every node of the global

network serves 16 PEs; a PE signals its decision to communication (made randomly) by placing a

token in a specified location. For each message, a dimension is chosen and the message is enqueued

to be sent across that dimension. When a message arrives at a new PE, a random decision is

made to either absorb the message (modeling its terminal arrival), or to send it through another

dimension, chosen uniformly at random among all dimensions higher than the one through which

it came. The model explicit mimics the petit and grand cycle nature of the CM-1, and explicitly
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mimicshandshakingthat ensures a buffer is available for a message before it is sent. The dimension

d of the hypercube parameterizes this model. A model with 6 dimensions has over 10,000 places

and 10,000 transitions. A model with 8 dimensions has over 100,000 places and transitions.

The slotted ring model is comprised of some N LPs that model fine-grained workload, we call

these workload generators. A workload generator is basically a loop within which a set of tokens

circulate. Every pass through the loop (five events) the workload generator randomly decides

whether to communicate over the ring. The ring itself is an LP, hence the communication topology

of the system is a tree with one root (the ring) and N leaves. The simulated communication is non-

blocking and serves simply to generate some simulation workload (a round-trip for a message) for the

ring LP. We control workload intensity by varying the firing time on loop transitions. The smaller

the firing time, the more simulation work per unit simulation time is required. This model clearly

demonstrates the need for dynamic remapping, because reasonable workload estimates derived from

the topology alone fail miserably to balance the load. A model with 64 workload LPs and one ring

LP has 4672 places and an equal number of transitions.

The timing delays in both models are based on realistic disparities between computation and

communication times. This has a definite impact on the synchronization protocol. For example,

certain "slow" transition firings in the CM-1 network model are two orders of magnitude larger

than the smallest delays on firings that cross processor boundaries. There is a very sizable lag (in

simulation time) between the last "fast" transition to fire, and the firing of the slow transition. It

would be disastrous to simply advance time by the minimum boundary firing time amount each

window, for many windows would contain no events. However, the technique of adding the least

on-processor event time-stamp to the minimum boundary firing time effectively skips over these

periods.

The simulations were conducted on the YAWNS (Yet Another Windowing Network Simulator)

parallel simulation testbed [20, 26], implemented on the Intel family of multiprocessors. We present

data from runs executed on the Intel iPSC/860, and upon the Intel Touchstone Delta [15], a large-

scale multiprocessor also based on Intel's i860 CPU. The time spent in the pair/match/mapping

algorithm was dominated by the I/O time to read the network description, and so proved to be

inconsequential.

The CM-1 routing network example defines an LP naturally as the submodel associated with

one router node. The problem communication topologies thus forms a hypercube. Since all LPs

are structurally identical, any topological measure of workload will assign the same workload to

each LP, and the merge/match/map algorithm maps it optimally under the assumptions of uniform

communication and execution costs. Moreover, under the homogeneous model assumptions, the

average execution cost for every LP was identical. No long term load imbalances could be expected

to develop, so that dynamic remapping should probably not be used.

Figure 2 plots the measured performance of the CM-1 model on sixteen processors of the Intel

iPSC/8601, as a function of the hypercube dimension (d = 6, 7, 8, 9). The various random decisions

l We have run this model on the Intel Delta as well, but it is impractical to do so on large models. The present

implementation allocates all processors, then has one processor read the model description from a single disk and
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Figure 2: Performance on Connection Machine global router example

were given parameters to cause the greatest amount of interprocessor communication. Each problem

size was executed long enough to simulate over ten million events, and was simulated both with

remapping logic enabled, and disabled. The dynamic remapping mechanism never caused the initial

mapping to be abandoned, even though at some individual remapping assessments it appeared

(temporarily) that some gain might be achieved by rearrangement. This illustrates the essential

safety offered using the Bayesian filter.

The left vertical axis demarks the aggregate average number of events executed per second

(in units of a thousand). The right vertical axis delineates the corresponding speedup, measured

using an optimized serial code that employs the same Petri net event processing logic, but uses a

splay-tree priority list to manage events, and suffers no unnecessary overheads inherented from the

parallel version. All speedup measurements are computed using the measured serial rate on a six

dimensional problem, as the larger models would not fit in one node's memory.

The overhead of gathering workloads and projecting remapped performance can be seen as

distribute it to the others. The load time is large, and so many processors (which are shared with many users and

which are charged for) are idle during the loading. A more sophisticated implementation could use the concurrent
file system.
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the gap between the two performance curves. On this problem the difference is less than 10%, a

difference that is increasingly amortized as the problem size grows. With increasing problem size

performance gets better, but it is clear that if the growth trend continues, by dimension 9 the event

rate is close to its maximal level. The fact that this occurs at a speedup less than 12 is due to

the cost of communication on the iPSC/860, which is quite high relative to the speed of the CPU.

These same speedups on the more balanced Intel iPSC/2 are nearly 20% better (but the iPSC/2's

CPU is a factor of 7 slower on this problem!).

We have also investigated our synchronization algorithm on various TPN models of mesh-

based architectures; these results are reported in [21]. Like the CM-1 model, these are essentially

self-balancing (at the time of that paper we had not yet developed the mapping and remapping

methods). This study also shows increasing performance as the problem size grows, but also shows

the dependence of good performance on a favorable computation to communication ratio. The

cost of communication on the Intel iPSC/2, iPSC/860, and Delta architectures we've used is high

enough to require substantial computation on average between communications.

We use the slotted ring model to better explore the benefits of dynamic remapping. As a test

case for unbalanced workload, we created a model with 64 workload LPs where the first 6 and last

47 LPs generate events at a rate of 50 events per unit simulation time, while the remaining 17

LPs generate 500 events per unit simulation time. This particular assignment of workload stresses

the static mapping algorithm, as adjacent heavy workloads are harder to distribute under its linear

ordering constraints. However, the initial assignment estimates workloads based solely on topology,

and is unable to distinguish between heavy and light workloads. Furthermore, the ring LP has many

more places and transitions than a workload LP, but ends up having nowhere near the same event

intensity. As a consequence we can usually expect the initial mapping to be very bad. Finally, the

unbalanced workload model is simple enough to compute an upper bound on the speedup possible,

by assuming the LPs are distributed optimally (an easy calculation by hand), communication costs

are free, and the initial mapping is perfect.

Figure 3 plots the results of simulating this model on 16, 32, and 64 processors of the Intel

Touchstone Delta. All runs generated approximately 10 million events. The vertical axes are as

before, this time with the event execution rate expressed in millions of events per second. We plot

three sets of data associated with "bad balance", the unbalanced workload described above. For

the purposes of comparison we also plot data associated with a "good balance" model where all LPs

have the same weight (50 events per unit simulation time). In all these runs communication with

the ring LP is infrequent. This allows us to isolate the effects of load imbalance from communication

costs. We still do have inescapable communication costs due to synchronization, which occurs every

unit of simulation unit.

On all runs where remapping was employed, remapping was chosen very shortly into the run,

as it was quickly evident that a new mapping based on event count measurements was superior.

Although theoretically possible, no subsequent remappings were performed. The necessity of dy-

namic remapping is clearly seen by examining performance when remapping is disabled. The jump

in performance at 64 processors is a consequence of the mapper initially always using as many pro-

cessors as are available. The worst that can happen (which did) is that the one processor assigned
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two LPs gets two workload LPs.

We also see that the dynamic remapping mechanism comes close to achieving the optimal

performance possible, given the unbalanced workload. Performance of the balanced workload is

nearly perfect for 16 and 32 processors; it falls away at 64 processors owing to the low number of

events performed on each processor between synchronizations (50).

6 Conclusions

This paper studies the problem of automatically paraUelizing the discrete-event simulation of large

timed Petri-nets executing on parallel architectures. The methods we described have been imple-

mented in a tool where one designs a Petri-net using a graphical tool, and then all remaining steps

for parallelization are performed automatically.

We describe a synchronization algorithm and automated load balancing techniques, both static

and dynamic. We present a new static mapping algorithm, and study its properties analytically.

This algorithm is not restricted to TPN simulations, it applies to more general parallel compu-

tations. We study the effectiveness of our methods on the performance of a simulation of the
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ConnectionMachineCM-1routingnetworkon 16processorsof an Intel iPSC/860,andona simu-
lation of a slotted-ringarchitecturethat is executedonup to 64processorsof the Intel Touchstone
Delta. Significantperformancebenefitsareobserved,and the effectivenessof (and needfor) dy-
namicremappingclearlydemonstrated.
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